ORIGINAL			
NUDIC	Caco I	No DW12-085	
N.N.F.U.6	. vase i	NU contraction of the second	
	\mathcal{D}	Ahern	
WITNESS_		A Contraction of the second seco	
00	NOT F	REMOVE FROM FILE	

STATE OF NEW HAMPSHIRE

BEFORE THE

PUBLIC UTILITIES COMMISSION

AQUARION WATER COMPANY OF NEW HAMPSHIRE, INC.

DOCKET NO. DW 12-085

REBUTTAL TESTIMONY

OF

PAULINE M. AHERN

March 6, 2013

TABLE OF CONTENTS

Introduction	1
Purpose	2
Review of Analysis of Witness David C. Parcell	3
Water Group Selection	3
Business Risk	3
Discounted Cash Flow Model	14
Comparable Earnings Analysis (CE)	36
Corrected Conclusion of Mr. Parcell's Cost of Common Equity	40
Adjustment to Reflect Company-Specific Risk	41
Financial Risk	41
Business Risk Adjustment	44

Appendix A – Professional Qualifications of Pauline M. Ahern

Page No.

ų,

1 Introduction

2 Q. Please state your name, occupation and business address.

A. My name is Pauline M. Ahern. I am a Principal of AUS Consultants. My
business address is 155 Gaither Drive, Suite A, Mt. Laurel, New Jersey 08054.

5 Q. Please summarize your professional experience and educational 6 background.

7 I have offered expert testimony on behalf of investor-owned utilities before Α. twenty-eight state regulatory commissions as well as one provincial regulatory 8 9 commission in Canada on rate of return issues, including, but not limited to 10 common equity cost rate, fair rate of return, capital structure issues, credit 11 quality issues, etc. I am a graduate of Clark University, Worcester, MA, where I 12 received a Bachelor of Arts degree with honors in Economics. I have also 13 received a Master of Business Administration with high honors and a 14 concentration in finance from Rutgers University. The details of my educational background, expert witness appearances, presentations I have given and 15 16 articles I have co-authored are shown in Appendix A supplementing this 17 testimony.

On behalf of the American Gas Association (A.G.A.), I calculate the A.G.A. Gas Index, which serves as the benchmark against which the performance of the American Gas Index Fund (AGIF) is measured monthly. The A.G.A. Gas Index and AGIF are a market capitalization weighted index and mutual fund, respectively, comprised of the common stocks of the publicly traded corporate members of the A.G.A.

I am also the Publisher of AUS Utility Reports, responsible for supervising
 the production, publication, distribution and marketing of its reports.

I am a member of the Society of Utility and Regulatory Financial Analysts
(SURFA) where I serve on its Board of Directors, having served two terms as
President, from 2006 – 2008 and 2008 – 2010. Previously, I held the position of
Secretary/Treasurer from 2004 – 2006. In 1992, I was awarded the
professional designation "Certified Rate of Return Analyst" (CRRA) by SURFA,
which is based upon education, experience and the successful completion of a
comprehensive written examination.

I am also an associate member of the National Association of Water
Companies, serving on its Finance/Accounting/Taxation and Rates and
Regulation Committees; a member of the Energy Association of Pennsylvania,
formerly the Pennsylvania Gas Association; and a member of the American
Finance, Financial Management and Energy Bar Associations. I am also a
member of Edison Electric Institute's Cost of Capital Working Group and the
Advisory Board of the Financial Research Institute of the University of Missouri.

15 Purpose

1

16 Q. What is the purpose of this testimony?

17 The purpose is to provide testimony on behalf of Aquarion Water Company of Α. 18 New Hampshire, Inc. (the Company) in rebuttal to certain aspects of the direct 19 testimony of David C. Parcell, witness for the Towns of Hampton and North 20 Hampton, NH (Towns). With regard to Mr. Parcell's testimony, I will address his 21 use of a natural gas distribution proxy group, his applications of the Discounted 22 Cash Flow Model (DCF), the Capital Asset Pricing Model (CAPM) and Comparable Earnings Model (CEM) as well as his failure to reflect both the 23 greater financial risk inherent in the Company's requested capital structure¹ and 24

Adopted by Mr. Parcell.

the greater risk of the Company's small size relative to Mr. Parcell's water
 group.

3 Q. Have you prepared attachments which support your rebuttal testimony?

- 4 A. Yes. They are Attachments PMA-1 through PMA-11.
- 5

6 Review of Analysis of Witness David C. Parcell

7 Water Group Selection

Q. Do you have any comment upon Mr. Parcell's use of a natural gas
 distribution secondary proxy group in addition to the <u>Value Line</u>
 Investment Survey (Value Line) group?

11 Yes. Mr. Parcell's use of a natural gas distribution group is inappropriate Α. 12 because, as discussed below, the water utility industry faces unique investment 13 risks relative to the electric, combination electric and gas, and natural gas utility 14 industries. Using a proxy group comprised of natural gas distribution companies for a return on common equity analysis for a water company, like the Company, 15 16 even if only as a secondary group, cannot reflect water industry risk, nor the Company's specific risks, and is therefore inadequate for water utility cost of 17 18 capital purposes. Therefore, I will not address the results of his analysis of that 19 group in further detail.

20 Business Risk

Q. Please define business risk and explain why it is important to the determination of a fair rate of return.

A. Business risk is the riskiness of a company's common stock without the use of
 debt and/or preferred capital. Examples of such general business risks to all
 utilities, i.e., water, electric and natural gas distribution, include the quality of

management, the regulatory environment, customer mix and concentration of
customers, service territory growth, capital intensity, size, and the like, which
have a direct bearing on earnings.

Business risk is important to the determination of a fair rate of return because the greater the level of risk, the greater the rate of return investors demand, consistent with the basic financial principle of risk and return.

7 Q. What business risks face the water industry in general?

8 Α. Water is essential to life and unlike electricity or natural gas, water is the only 9 utility product which is ingested. Consequently, water guality is of paramount 10 importance to the health and well-being of customers and is therefore subject to 11 extensive additional strict health and safety regulations. Beyond health and 12 safety concerns, water utility customers also have significant aesthetic concerns regarding the water delivered to them by utilities, and regulators pay close 13 attention to these concerns because of the strong feelings they arouse in 14 consumers. Also, unlike many electric and natural gas utilities, water utilities 15 16 serve a production function in addition to the delivery functions served by 17 electric and gas utilities.

Water utilities obtain supply from wells, aquifers, surface water 18 19 reservoirs, streams and rivers, or through water rights. Throughout the years, 20 well supplies and aquifers have been environmentally threatened, with historically minor purification treatment giving way to major well rehabilitation, 21 22 treatment or replacement. Simultaneously, environmental water quality standards have tightened considerably, requiring multiple treatments. Supply 23 availability is also limited by drought, water source overuse, runoff, threatened 24 species/habitat protection and other factors. In the course of procuring water 25

supplies and treating water so that it meets Safe Drinking Water Act (SDWA)
standards, water utilities have an ever-increasing responsibility to be stewards
of the environment from which supplies are drawn, in order to preserve and
protect the natural resources of the United States.

5 Electric and natural gas companies, where transmission and distribution 6 is separate from generation, generally do not produce the electricity or natural 7 gas which they transmit and distribute. In contrast, water utilities are typically 8 vertically engaged in the entire process of acquiring supply, production, 9 treatment and distribution of water. Hence, water utilities require significant 10 capital investment in not only sources of supply and production (wells and 11 treatment facilities), but also in transmission and distribution systems, both to 12 serve additional customers and to replace aging systems, creating a major risk facing the water and wastewater utility industry. 13

14

21

22

23

24

25

26 27 28

29

30 31

32

33

<u>Value Line</u>² observes the following about the water utility industry:

15 ...industry conditions are likely to stiffen going forward. Although
16 the regulatory environment ought to remain favorable, and be a
17 big help with costs, providers will be left holding sizable tabs,
18 nonetheless. Unfortunately, most operating in this space lack the
19 cash balances to meet the capital requirements that loom.

One of, if not the, biggest essentials to sustaining just about any life form, water demand is undeniable. As a result, demand will probably continue to grow along with the population, with the only other major determinant being weather conditions.

* * *

Despite the improved regulatory environment, water providers are still left holding the bill for most of the infrastructure improvements that need to be made. And that can be substantial amounts of cash in this space, given the age and conditions of many of these infrastructures. However, the majority of those operating here lack the finances to fund the improvements on their own and are forced

² <u>Value Line Investment Survey</u>, January 18, 2013.

1 to look to outside financiers in order to meet the capital 2 Although external financing has become requirements. 3 commonplace, the increased shares and or debt taken on in order 4 to finance the upgrades are eating away at profits and diluting 5 shareholder gains. 6 * * * 7 8 9 The capital-intensive nature of this business, coupled with 10 financial constraints, spell trouble for the future gains of those in 11 this space. Indeed, maintenance costs alone are expected to cost 12 operators hundreds of millions of dollars each year. 13 14 Consequently, because the water and wastewater industry is much more capital-intensive than the electric, combination electric and gas or natural gas 15 16 utilities, the investment required to produce a dollar of revenue is greater. For example, as shown on page 1 of Attachment PMA-1, it took \$3.89 of net utility 17 18 plant on average to produce \$1.00 in operating revenues in 2011 for the water 19 utility industry as a whole. In contrast, for the electric, combination electric and 20 gas and natural gas utility industries, on average it took only \$2.29, \$1.88 and \$1.29, respectively, to produce \$1.00 in operating revenues in 2011. The 21 22 greater capital intensity of water utilities is not a new phenomenon as water 23 utilities have exhibited a consistently and significantly greater capital intensity relative to electric, combination electric and gas and natural gas utilities during 24 the ten years ended 2011, as shown on page 2 of Attachment PMA-1. As 25 26 financing needs have increased over the last decade, the competition for capital 27 from traditional sources has increased, making the need to maintain financial 28 integrity and the ability to attract needed new capital increasingly important.

The National Association of Regulatory Commissioners (NARUC) has also highlighted the challenges facing the water and wastewater industry stemming from its capital intensity. NARUC's Board of Directors adopted the

1 following resolution in July 2005:³

WHEREAS, To meet the challenges of the water and wastewater industry which may face a combined capital investment requirement nearing one trillion dollars over a 20-year period, the following policies and mechanisms were identified to help ensure sustainable practices in promoting needed capital investment and cost-effective rates: a) the use of prospectively relevant test years; b) the distribution system improvement charge; c) construction work in progress; d) pass-through adjustments; e) staff-assisted rate cases; f) consolidation to achieve economies of scale; g) acquisition adjustment policies to promote consolidation and elimination of non-viable systems; h) a streamlined rate case process; i) mediation and settlement procedures; j) defined timeframes for rate cases; k) integrated water resource management; l) a fair return on capital investment; and m) improved communications with ratepayers and stakeholders; and

WHEREAS, Due to the massive capital investment required to meet current and future water quality and infrastructure requirements, adequately adjusting allowed equity returns to recognize industry risk in order to provide a fair return on invested capital was recognized as crucial...

RESOLVED, That the National Association of Regulatory Utility Commissions (NARUC), convened in its July 2006 Summer Meetings in Austin, Texas, conceptually supports review and consideration of the innovative regulatory policies and practices identified herein as "best practices;" *and be it further*

RESOLVED, That NARUC recommends that economic regulators consider and adopt as many as appropriate of the regulatory mechanisms identified herein as best practices...

30 31

2

3

4

5

6

7

8

9 10

11

12

13

14

15 16

17

18

19

20 21

22

23

24

25

26 27

28

29

The water utility industry also experiences lower relative depreciation

32 rates. Lower depreciation rates, as one of the principal sources of internal cash

33 flows for all utilities, mean that water utility depreciation as a source of internally-

34 generated cash is far less than for electric, combination electric and gas or

35 natural gas. Water utilities' assets have longer lives and, hence, longer capital

- 36 recovery periods. As such, water utilities face greater risk due to inflation which
- 37 results in a higher replacement cost per dollar of net plant than for other types

³ "Resolution Supporting Consideration of Regulatory Policies Deemed as 'Best Practices'", Sponsored by the Committee on Water. Adopted by the NARUC Board of Directors, July 27, 2005.

of utilities. As shown on page 3 of Attachment PMA-1, water utilities
 experienced an average depreciation rate of 3.0% for 2011. In contrast, in
 2011, the electric, combination electric and gas and natural gas experienced
 average depreciation rates of 3.5%, 3.5% and 3.4%, respectively.

5 As with capital intensity, the lower relative depreciation rates of water and 6 wastewater utilities is not a new phenomenon. As shown on page 4 of 7 Attachment PMA-1, water utility depreciation rates have been consistently and 8 significantly lower than those of the electric, combination electric and gas and 9 natural gas utilities. Such low depreciation rates signify that the pressure on 10 cash flows remains significantly greater for water utilities than for other types of 11 utilities.

Not only is the water utility industry historically capital intensive, it is
 expected to incur significant capital expenditure needs over the next 20 years.
 Prior to the recent economic and capital market turmoil, Standard & Poor's
 (S&P) noted⁴:

Standard & Poor's expects the already capital-intensive water 16 17 utility industry to become even more so over the next several 18 years. Due to the aging pipeline infrastructure and more stringent quality standards, the U.S. Environmental Protection Agency's 19 20 [sic] (EPA) foresees a need for \$277 billion to upgrade and 21 maintain U.S. water utilities through 2022, with about \$185 billion 22 going toward infrastructure improvements. In addition, about \$200 billion will be needed for wastewater applications, which suggests 23 24 increased capital spending to be a long-term trend in this industry. 25

In line with these trends, many companies have announced
 aggressive capital spending programs. Forecast capital spending
 primarily focuses on infrastructure replacements and growth
 initiatives. Over the past five years, capital spending has been
 equivalent to about three times its depreciation expense.
 However, companies are now forecasting spending to be at or

⁴ Standard & Poor's, <u>Credit Outlook For U.S. Investor-Owned Water Utilities Should Remain</u> <u>Stable in 2008</u> (January 31, 2008) 2, 4.

above four times depreciation expense over the intermediate term. However, companies in areas without these mechanisms, earnings, and cash flow could be negatively affected by the increased spending levels, which over the longer term could harm a company's overall credit profile.

- 7 Due to the high level of capital spending, U.S. investor-owned 8 water utilities do not generate positive free cash flow. This. 9 coupled with the forecast increase in capital spending over the 10 intermediate term, will require additional access to capital markets. 11 We expect rated water companies to have enough financial 12 flexibility to gain that access. Ratings actions shouldn't result from 13 this increased market activity because we expect companies to 14 use a balanced financing approach, which should maintain debt 15 near existing levels.
- 17 Specifically, the EPA states the following⁵:

1

2

3

4

5

6

16

- 18 The survey found that the total nationwide infrastructure need is 19 \$334.8 billion for the 20-year period from January 2007 through December 2026. With \$200.8 billion in needs over the next 20 20 21 years, transmission and distribution projects represent the largest 22 category of need. This result is consistent with the fact that 23 transmission and distribution mains account for most of the 24 nation's water infrastructure. The other categories, in descending 25 order of need are: treatment, storage, source and a miscellaneous category of needs called "other". The large magnitude of the 26 27 national need reflects the challenges confronting water systems as 28 they deal with an infrastructure network that has aged 29 considerably since these systems were constructed, in many 30 cases, 50 to 100 years ago. 31
 - The 2009 Report Card for America's Infrastructure⁶ published by the
- 33 American Society of Civil Engineers (ASCE) states:
- The nation's drinking-water systems face staggering public investment needs over the next 20 years. Although America spends billions on infrastructure each year, drinking water systems face an annual shortfall of at least \$11 billion in funding needed to replace aging facilities that are near the end of their useful life and to comply with existing and future federal water regulations. The shortfall does not account for any growth in the demand for water

⁵ "Fact Sheet: "EPA's 2007 Drinking Water Infrastructure Needs Survey and Assessment", United States Environmental Protection Agency, Office of Water, February 2009, 1 (the most recently available).

⁶ 2009 American Society of Civil Engineers, Report Card for America's Infrastructure 2009 (the most recently available).

1 2 over the next 20 years.² (footnote omitted)

Water utility capital expenditures as large as those projected by the EPA 3 4 and ASCE will require significant financing. The three sources typically used for 5 financing are debt, equity (common and preferred) and cash flow. All three are intricately linked to the opportunity to earn a sufficient rate of return as well as 6 7 the ability to achieve that return. Consistent with the Hope and Bluefield, the 8 return must be sufficient to maintain credit quality as well as enable the 9 attraction of necessary new capital, be it debt or equity capital. If unable to 10 raise debt or equity capital, the utility must turn to either retained earnings or 11 free cash flow, both of which are directly linked to earning a sufficient rate of 12 return. If either is inadequate, it will be nearly impossible for the utility to invest in needed infrastructure. Since all utilities typically experience negative free 13 cash flows, it is clear that an insufficient rate of return can be financially 14 15 devastating for utilities and for their customers, the ratepayers. Page 5 of 16 Attachment PMA-1 demonstrates that the free cash flows (funds from operations minus capital expenditures) of water utilities as a percent of total 17 operating revenues has been consistently more negative than that of the 18 19 electric, combination electric and gas and natural gas utilities for the ten years ended 2011, only showing some improvement in 2011. Magnifying the impact 20 21 of water utilities' negative free cash flow position is a continued inability to 22 achieve their authorized rate of return on common equity, as has been the case 23 for the Company.

24 Consequently, as with the previously discussed capital intensity, 25 depreciation rates and significant capital expenditures relative to net plant, the 26 consistently and more significantly negative free cash flows relative to operating

revenues of water utilities indicates greater investment risk for water utilities
 relative to electric, combination electric and gas and natural gas utilities.

In view of the foregoing, it is clear that the water utility industry's high degree of capital intensity, low depreciation rates and consistently low free cash flow, coupled with the need for substantial infrastructure capital spending, requires regulatory support in the form of adequate and timely rate relief, including sufficient authorized returns on common equity as recognized by NARUC, so water utilities will be able to successfully meet the challenges they face.

Q. Are there other indications that the water utility industry exhibits more investment risk than the electric, combination electric and gas and natural gas utility industries?

Yes. Pages 6 through 12 of Attachment PMA-1 present several such 13 Α. 14 total debt / earnings before interest, taxes, depreciation and indications: 15 amortization (EBITDA); funds from operations (FFO) / total debt; funds from operations / interest coverage; before-income tax / interest coverage; market 16 17 capitalization; earned returns on common equity (ROEs) and earned v. 18 authorized ROEs for the water industry for the ten years ended 2011. The 19 increasing proportion of total debt to EBITDA for the water utilities indicates significantly increasing and greater financial risk for water utilities, which began 20 21 the most recent ten years below that of electric, combination electric and gas 22 and natural gas utilities and is now higher.

As noted below, S&P evaluates total debt as a percentage of EBITDA and FFO as a percentage of debt in the bond / credit rating process. Page 6 of Attachment PMA-1 shows that total debt / EBITDA has risen steadily for water

1 utilities through 2009, dropping in both 2010 and 2011. Notwithstanding the 2 decline in 2010 and 2011, total debt / EBITDA is now approximately the same 3 as that for the electric utilities, but higher than that for combination electric and 4 gas and natural gas utilities. Page 7 shows that FFO / total debt has remained in the approximately 10.00% - 20.00% range for water utilities over the decade 5 6 ending 2011, rising slightly in 2011. However, FFO / total debt for combination 7 electric and gas as well as natural gas utilities rose during the ten years, 8 exceeding that of water utilities significantly in 2009 and dropping back 9 somewhat in 2010 and still higher than for the water utilities in 2011. The consistently low level of FFO / total debt for the water utilities, is a further 10 11 indication of the pressures upon water utility cash flows and the increased 12 relative investment risk which the water utility industry faces.

13 Pages 8 and 9 of Attachment PMA-1 confirm the pressures upon both 14 cash flows and income faced by water utilities. Page 8 shows that FFO / 15 interest coverage for the water, electric, combination electric and gas and natural gas utilities followed a similar pattern to FFO/total debt for the ten years 16 17 ended 2011. FFO interest coverage remained relative consistent for water 18 utilities, rising and falling between approximately 2.0 and 4.0 times during the period. A similar pattern was exhibited by electric utilities. Page 9 shows that 19 20 before-income tax coverage interest coverage for water utilities also remained 21 relatively stable, between 2.50 and 3.25 times, similar to that of the electric and 22 combination electric and gas utility groups, but significantly lower than that of the natural gas utility group for the last nine years In 2009, in all likelihood due 23 24 to the "Great Recession" and the economy's currently nascent, fragile recovery 25 from it, before-income tax interest coverage for water, electric and combination

electric and gas utilities all fell below 3.0 times, rising slightly in 2011, while
 natural gas utilities continue to enjoy a significantly higher before-income tax
 interest coverage. Once again, the consistency and relatively low level of
 interest coverage ratios for water utilities are further indications of the pressures
 upon cash flow which water utilities face, confirming greater investment risk for
 water utilities relative to electric, combination electric and gas and natural gas
 utilities.

8 The market capitalization of the four groups shown on page 10 clearly 9 indicates that the water utility group has the lowest market capitalization, and 10 therefore, the most risk based on size relative to the other utility groups as will 11 be discussed below.

12 A final indication of the relative investment risk of water utilities compared 13 with electric, combination electric and gas and natural gas utilities, are trends in 14 earned ROEs. Low earned ROEs relative to the other utility group reflects a 15 decreased ability to achieve sufficient free cash flows and as stated previously, magnifies the impact of water utilities' negative free cashflow position. As 16 17 shown on page 11 of Attachment PMA-1, earned returns on average for water 18 utilities have generally been below those of electric, combination electric and gas and natural gas utilities during the ten years ended 2011. 19 Page 12 of 20 Attachment PMA-1 indicates that water utilities have consistently (with the 21 exception of 2005) earned an average ROE below their average authorized 22 ROEs. Note that at year-end 2011, authorized ROEs for the group averaged slightly below 10.00% in contrast to Mr. Parcell's 6.1% - 9.5% recommended 23 range of common equity cost rate. Also, the March 2013 AUS Utility Report is 24 currently reporting an average authorized ROE of 9.98% for the water group. In 25

addition, the most recently authorized water utility ROE of which I am aware is
 an ROE of 10.55% on a 50.97% common equity ratio awarded to Arizona Water
 Company – Eastern Group in Decision No. 73736 in Docket No. W-01445A-11 0310 on February 20, 2013.

5 In view of all of the foregoing, it is clear that the investment risk of water 6 utilities has increased over the most recent ten years and that water utilities 7 currently face greater investment risk relative to electric, combination electric 8 and gas and natural gas utilities.

9 Discounted Cash Flow Model

Q. Please comment upon the applicability of the DCF model in establishing a
 cost of common equity for the Company.

12 Α. As with any established cost of equity model, the extent to which the DCF is relied upon should depend upon the extent to which the cost rate results differ 13 from those resulting from the use of other cost of common equity models. The 14 15 DCF model has a tendency to mis-specify investors' required return rate when the market value of common stock differs significantly from its book value. The 16 17 market-based DCF model will result in a total annual dollar return on book 18 common equity equal to the total annual dollar return expected by investors only when market and book values are equal, but market values and book values of 19 common stocks are rarely at unity. On average, for the years 2002-2011⁷, the 20 21 market values of utilities' common stocks have been well in excess of their book 22 values as shown on page 2 of Schedule 9 of Exhibit (DCP-1), ranging 23 between 169% and 288% for the water group.

⁷ Although page 2 of Schedule 9 of Exhibit__(DCP-1) say that the last column is from 2002-2010, The averages shown are for 2002-2011.

1 Mathematically, the DCF model understates investors' required return 2 rate when market value exceeds book value and overstates them when market 3 value is less than book value because, in many instances, market prices reflect 4 investors' assessments of long-range market price growth potentials (consistent with the infinite investment horizon implicit in the standard regulatory version of 5 6 the DCF model) not fully reflected in analysts' shorter range forecasts of future 7 growth for earnings per share (EPS) and dividends per share (DPS) and other 8 accounting proxies. This indicates the need to better match market prices with 9 investors' longer range growth expectations which are embedded in those 10 prices. The understatement/overstatement of investors' required return rate 11 associated with the application of the market price-based DCF model to the 12 book value of common equity clearly illustrates why reliance upon a single 13 common equity cost rate model should be avoided.

Thus, a mismatch results in the application of the DCF model as market prices reflect long range expectations of growth in market prices (consistent with the presumed infinite investment horizon of the standard DCF model), while the short range forecasts of growth in accounting proxies, i.e., EPS and DPS, do not reflect the full measure of growth (market price appreciation) expected in per share market value.

Q. Please explain why a DCF-derived common equity cost rate mis-specifies
 investors' expected common equity cost rate when the market/book ratio
 is greater or less than unity (100%).

A. Under the DCF model, the rate of return investors require is related to the price
 paid for a stock i.e., market prices form the basis upon which they formulate the
 required rate of return. However, a regulated utility is limited to earning on its

net book value (depreciated original cost) rate base. As discussed previously,
 market values differ from book values for many reasons unrelated to earnings.
 Thus, when market values differ significantly from book values, a market-based
 DCF cost rate applied to the book value of common equity will not accurately
 reflect investors' expected common equity cost rate. It will either overstate or
 understate investors' expected common equity cost rate.

7 Therefore, in an attempt to emulate investor behavior, neither the DCF nor 8 any single common equity cost rate model should be relied upon exclusively in 9 determining a cost rate of common equity and the results of multiple costs of 10 common equity models should be evaluated. Moreover, the use of multiple cost 11 of common equity models adds reliability to the estimation of the investor-12 required cost of common equity by moderating potentially abnormal results from 13 any single model. In addition, the need to rely upon more than one cost of 14 common equity model in arriving at a recommended common equity cost rate is well documented in the academic literature.⁸ 15

Q. Please comment upon Mr. Parcell's estimation of the growth component for his DCF analysis.

A. In essence, without explanation, Mr. Parcell relied exclusively upon FirstCall's
 projected EPS growth rates to arrive at this DCF results while ignoring <u>Value</u>
 <u>Line</u>'s projected EPS growth rates, although he evaluated a multitude of
 historical and projected cost rates. On page 17, line 26 through page 18, line

⁸ Roger A. Morin, <u>New Regulatory Finance</u>, (Public Utility Reports, Inc., 2006) 428-431. Eugene F. Brigham and Louis C. Gapenski, <u>Financial Management – Theory and Practice</u> Fourth Edition, (The Dryden Press, 1985) 256. Eugene F. Brigham and Phillip R. Daves, <u>Intermediate Financial Management</u>, (Thomson-Southwestern, 2007) 332-333.

1 29 of his direct testimony, Mr. Parcell discusses his use of historical growth in earnings retention, EPS, DPS, book value per share (BVPS), projected growth 2 in earnings retention, EPS, DPS, and BVPS as well as FirstCall security 3 4 analysts' five-year projections in EPS growth. As I explain below, it is not necessary to evaluate any growth proxy except security analysts' forecasts of 5 6 EPS growth because security analysts' forecasts take into account historical 7 information as well as all current information likely to impact the future, which is 8 critical since both cost of capital and ratemaking are prospective. In addition, 9 Myron Gordon, who first introduced the DCF model adapted for utility 10 ratemaking, came to recognize long after his book, The Cost of Capital to a 11 Public Utility, was published in 1974 that the growth component of his original "Gordon Model" which relied upon the sustainable growth method had a serious 12 limitation. Dr. Gordon, in a presentation on March 27, 1990 (some 16 years 13 14 after the publication of his 1974 book), before the Institute for Quantitative 15 Research In Finance, in Palm Beach, Florida, entitled The Pricing of Common Stocks, stated that analysts' growth rate projections were superior to the 16 17 sustainable or earnings retention growth method:

18 The most serious limitation of the Gordon Model is the assumption 19 that the dividend expectation can be represented with just two parameters, D and br ... We have seen that earnings and growth 20 estimates by security analysts were found by Malkiel and Cragg to 21 22 be superior to data obtained from financial statements for the 23 explanation of variation in price among common stocks. That is, 24 better estimates are obtained for the coefficient of the various 25 explanatory variables. ... estimates by security analysts available from sources such as IBES are far superior to the data available to 26 27 Malkiel and Cragg. Secondly, the estimates by security analysts 28 must be superior to the estimates derived solely from financial 29 statements. (italics added)

30 31

Also, Morin notes⁹:

. . . .

Because of the dominance of institutional investors and their influence on individual investors, analysts' forecasts of long-run growth rates provide a sound basis for estimating required Financial analysts exert a strong influence on the returns. expectations of many investors who do not possess the resources to make their own forecasts, that is, they are a cause of g. The accuracy of these forecasts in the sense of whether they turn out to be correct is not at issue here, as long as they reflect widely held expectations. As long as the forecasts are typical and/or influential in that they are consistent with current stock price levels, they are relevant. The use of analysts' forecasts in the DCF model is sometimes denounced on the grounds that it is difficult to forecast earnings and dividends for only one year, let alone for longer time periods. This objection is unfounded, however, because it is present investor expectations that are being priced; it is the consensus forecast that is embedded in price and therefore in required return, and not the future as it will turn out to be.

21

1 2 3

4

5

6

7

8

9 10

11

12

13

14

15

16

17

18

19

20

22

23

24 25

26

27

Published studies in the academic literature demonstrate that growth forecasts made by security analysts represent an appropriate source of DCF growth rates, are reasonable indicators of investor expectations and are more accurate than forecasts based on historical growth. These studies show that investors rely on analysts' forecasts to a greater extent than on historic data only.

28 29 30

In addition, studies performed by Cragg and Malkiel¹⁰ demonstrate that

- 31 analysts' forecasts are superior to historical growth rate extrapolations. While
- 32 some question the accuracy of analysts' forecasts of EPS growth, it does not
- 33 really matter what the level of accuracy of those analysts' forecasts is well after
- 34 the fact. What is important is that they influence investors and hence the
- 35 market prices they pay on any given day.
- 36

Moreover, there is no empirical evidence that investors would discount or

⁹ Morin <u>298.</u>

¹⁰ John G. Cragg and Burton G. Malkiel, <u>Expectations and the Structure of Share Prices</u> (University of Chicago Press, 1982) Chapter 2 (Ahern Workpaper 13).

disregard analysts' estimates of growth in earnings per share. "Do Analyst
 Conflicts Matter? Evidence From Stock Recommendations,"¹¹ provided in
 Attachment PMA-10, examined whether conflicts of interest with investment
 banking [IB] and brokerage businesses induced sell-side analysts to issue
 optimistic stock recommendations and whether investors were misled by such
 biases. They conclude on page 1 of Attachment PMA-2.

7 8

9

10

Overall, our findings do not support the view that conflicted analysts are able to systematically mislead investors with optimistic stock recommendations.

Hence, since investors have such security analysts' EPS growth rate projections available to them, investors are aware of the accuracy of such projections and investors are aware of the literature supporting the superiority of such projections, security analysts' earnings projections including those from *Value Line* should be used in a cost of common equity analysis.

16 Q. Please comment upon Mr. Parcell's calculation of his DCF results.

17 Α. First, Mr. Parcell used the average growth rates of all the growth rates he 18 evaluated, historical and projected, shown in the next to last column on page 4 of Schedule 6 on Exhibit (DPC-1) in adjusting his water company dividend 19 20 yields. Second, he added the resultant composite mean / median adjusted 21 dividend yields to the FirstCall EPS composite mean / growth rates to derive his 22 composite mean / median DCF results. Thus, Mr. Parcell's use of two different 23 growth rates, one to adjust the dividend yield and one as the growth component 24 of his DCF analysis is inconsistent. In addition, it is incorrect, in my opinion,

¹¹ Anup Agrawal and Mark A. Chen, "Do Analysts' Conflicts Matter? Evidence from Stock Recommendations", (Journal of Law and Economics, August 2008), Vol. 51.

to add a the median adjusted dividend yield to the median growth rate to derive
a composite group median. There is a mismatch between the median adjusted
dividend yield of 3.3%, which is the adjusted dividend yield for either American
States Water Co. and Connecticut Water Service, Inc. and EPS growth rate of
5.0% which is Connecticut Water Service, Inc.'s FirstCall EPS growth rate.

6 Mr. Parcell more correctly should have used an average of the <u>Value</u> 7 <u>Line</u> projected EPS growth rate and the FirstCall EPS growth rate for each 8 water company to adjust his unadjusted water company dividend yields. Then 9 he should have added the average of each company's <u>Value Line</u> / First Call 10 projected EPS growth to each company's adjusted dividend yield to derive a 11 DCF result for each company. The median of these DCF results for each 12 company is the appropriate "composite median".

Q. What would Mr. Parcell's DCF results have been had he correctly relied upon both <u>Value Line</u> and FirstCall's projected growth in EPS and correctly relied upon the median DCF results?

16 Α. As shown on page 1 of Attachment PMA-3, I have derived DCF cost rates for 17 Mr. Parcell's water group using his dividend yields and average forecasted growth rates in EPS for each company. Focusing on the upper portion of the 18 broad DCF range, as Mr. Parcell states he did on lines 16-17 on page 19 of his 19 20 direct testimony, a range of DCF-derived common equity cost rate of 9.59% -21 9.78%, with a midpoint of 9.69% is indicated for the water group. However, 22 because this common equity cost rate range is based upon the market data of 23 Mr. Parcell's water group, it reflects no adjustment for the specific financial and 24 business risks of the Company which I will discuss later in this testimony.

1 Capital Asset Pricing Model

Q. At page 20 lines 7-10 of Mr. Parcell's direct testimony, he states "...the
 CAPM is generally superior to the simple RP method because the CAPM
 specifically recognizes the risk of a particular company or industry, (*i.e.*,
 beta) whereas the simple RP method assumes the same COE for all
 companies exhibiting similar bond ratings or other characteristics."
 Please comment.

8 Α. Mr. Parcell is incorrect. In his application of the CAPM, he relies upon the yield 9 on 20-year U.S. Treasury bonds as the risk-free rate. By definition, the yield on 20-year U.S. Treasury bonds cannot recognize the risk of a particular company 10 or industry because it reflects the "risk" of the U.S. Government. Moreover, 11 beta is a measure of systematic risk only. As Mr. Parcell notes on page 20, 12 13 lines 24-25, "Beta is a measure of the relative volatility (or risk) of a particular 14 stock in relation to the overall market." Thus, it does not reflect non-systematic or company-specific risks. Beta measures a small percent of the total risk of a 15 particular company because the R² (R-Squared) or the correlation coefficients 16 17 average only 0.1956 and 0.2740 for Mr. Parcell's water group, indicating that the 18 average beta of the water group reflects only 19.56% of the total risk for the group, as shown on Attachment PMA-4. In contrast, the risk premium method 19 relies upon the use of a company-specific expected bond yield. As shown on 20 Attachment PMA-5, pages 3 through 5, Standard & Poor's (S&P) explains how 21 and why the utility bond rating process takes into account all of the basic 22 23 components of business and financial risk. In addition, a significant portion of my application of the risk premium method discussed below is derived by the 24 25 use of beta to allocate a total market equity risk premium. This approach to the

risk premium analysis reflects all company-specific risk (i.e., in the companyspecific bond yield plus that portion which is contained in beta), and the remainder of all risk is reflected through the use of beta in determining the applicable equity risk premium. In view of the foregoing, Mr. Parcell's comments that his CAPM is somehow superior to the risk premium method because the risk premium method is "simple" are without merit.

7 Q. Please comment upon Mr. Parcell's CAPM analysis.

8 Α. Mr. Parcell's CAPM analysis is flawed in three respects. First, he has incorrectly 9 relied upon an historical risk-free rate despite the fact the both ratemaking and the cost of capital are prospective. Second, he has incorrectly calculated his 10 11 market equity risk premium by relying upon: actually achieved, or non-market 12 based, rates of return on book common equity for a proxy for the market, the 13 S&P 500; a geometric mean historical market equity risk premium; the historical 14 total return on U.S. Treasury securities; and, not employing a prospective, or 15 forward-looking equity risk premium. Third, he has not incorporated an 16 empirical CAPM (ECAPM) analysis despite the fact that empirical evidence indicates that the low-beta securities earn returns higher than the CAPM 17 predicts and high-beta securities earn less. 18

Q. Please comment upon Mr. Parcell's use of historical, i.e., a recent three month average, yields on 20-year U.S. Treasury Bonds.

A. Mr. Parcell's use of historical yields on 20-year U.S. Treasury bonds ignores the
fact that both the cost of capital and ratemaking are prospective, which Mr.
Parcell acknowledges himself when he states on page 5, lines 30-31 that "the
cost of capital is an opportunity cost and is prospective-looking." The cost of
capital, including the cost rate of common equity, is expectational in that it

reflects investors' expectations of future capital markets, including an
 expectation of interest rate levels, as well as risks. In addition, ratemaking is
 prospective in that the rates set in this proceeding will be in effect for a period of
 time in the future.

As with forecasts of EPS growth rates, investors are also aware of the 5 6 accuracy of past forecasts, whether for earnings or dividends growth or for 7 interest rates. However, investors do not have prior knowledge of the accuracy 8 of the forecasts available to them at the time they make their investment 9 decisions. The accuracy of any forecast only becomes known after some future 10 period of time has elapsed. For example, the accuracy of the current *Blue Chip* 11 Financial Forecasts (Blue Chip) January 1, 2013 consensus forecast of the 30-12 Year U.S. Treasury Bond of 3.60% for the six guarters ending with the second 13 quarter 2014 (as can be gleaned from page 3 of Attachment PMA-15), cannot 14 be known until the end of the second quarter 2014, more than one year into the 15 future. Therefore, consistent with the efficient market hypothesis, since 16 investors have such interest rate projections available to them and are aware of 17 the past accuracy of such projections, current[?] interest rate projections should 18 be used in cost of common equity analyses.

Q. Please comment upon Mr. Parcell's estimation of the market equity risk premium for his CAPM analysis.

A. Mr. Parcell's derivation of the market equity risk premium for his CAPM analysis
is flawed for the following three reasons. First, he incorrectly relied upon
achieved rates of return on book common equity. Second, he incorrectly relied
in part upon geometric mean historical market returns. Third, he incorrectly
relied upon the historical mean total return on U.S. Treasury securities. Fourth,

1

he did not employ a prospective equity risk premium.

Q. Please comment upon Mr. Parcell's use of the rate of return on book common equity for the S&P 500.

4 Α. Mr. Parcell used the actual achieved rates of earnings on book common equity 5 of the S&P 500 Composite for the period 1978-2011 as shown on Schedule 7 of Exhibit (DCP-1). As discussed above, both the cost of capital and ratemaking 6 7 are prospective in nature. In addition, the underlying theory of the CAPM 8 requires the use of an expected market return. Therefore, the use of historically achieved earnings on book common equity is inconsistent with both the 9 prospective nature of the cost of capital and ratemaking as well as with the very 10 11 theory of the CAPM. In his second CAPM analysis, Mr. Parcell calculates the 12 historical risk premium using page 32 of Ibbotson® SBBI® - 2012 Classic Yearbook – Market Results for Stocks, Bonds, Bills and Inflation – 1926-2011 13 14 (SBBI - 2012 Classic) which presents the average total return on large 15 company stocks from 1926-2011, which are appropriately market returns - not returns on book common equity. Thus, Mr. Parcell's two CAPM analyses are a 16 17 mismatch because he has mixed returns on book common equity with market 18 returns. Moreover, in estimating the total return on the market, whether by 19 returns on book common equity or with market returns, he did not even consider forecasted market returns. This is in total contradiction to his recognition of the 20 21 need to use an expected total return (page 19, lines 23-25 of his direct 22 testimony) and his acknowledgement that the cost of capital is prospective 23 (page 5, lines 30-31 of his direct testimony).

Q. Please comment upon Mr. Parcell's use of the geometric mean historical market return.

1 Α. At lines 13-19 on page 21 of his direct testimony, Mr. Parcell notes that he has 2 relied upon both the arithmetic and geometric mean returns for the S&P 500 as 3 tabulated by Morningstar, i.e., Ibbotson Associates. Only arithmetic mean 4 return rates and yields are appropriate for cost of capital purposes because expost (historical) total returns and equity risk premiums differ in size and direction 5 6 over time, providing insight into the variance and standard deviation of returns. 7 Because the arithmetic mean captures the prospect for variance in returns and 8 equity risk premiums, it provides the valuable insight needed by investors in 9 estimating *risk* in the future when making a current investment. Absent such 10 valuable insight into the potential variance of returns, investors cannot 11 meaningfully evaluate prospective risk. The geometric mean of ex-post equity 12 risk premiums provides no insight into the potential variance of future returns 13 because the geometric mean relates the change over many periods to a 14 constant rate of change, rather than the year-to-year fluctuations, or variance, 15 critical to risk analysis and therefore has little or no value to investors seeking to 16 measure risk. Moreover, from a statistical perspective, stock returns and equity 17 risk premiums are randomly generated. Thus, the arithmetic mean is also expectational, as is the cost of capital and ratemaking as noted above. 18

19The financial literature is quite clear on this point, that risk is measured by20the variability of expected returns, i.e., the probability distribution of returns.¹²21Pages 56 and 57 of Ibbotson® SBBI® – 2012 Valuation Yearbook – Market22Results for Stocks, Bonds, Bills and Inflation – 1926-2011 (SBBI – 201223Valuation) (see pages 9 and 10 of Attachment PMA-6) explain in detail why the24arithmetic mean is the correct mean to use when estimating the cost of capital.

Eugene F. Brigham, Fundamentals of Financial Management (The Dryden Press, 1989) 639.

In addition, Weston and Brigham¹³ provides the standard financial textbook 1 2 definition of the riskiness of an asset when they state: 3 The riskiness of an asset is defined in terms of the likely 4 variability of future returns from the asset. (emphasis added) 5 And Morin states¹⁴: 6 7 The geometric mean answers the question of what constant 8 return you would have to achieve in each year to have your 9 investment growth match the return achieved by the stock 10 market. The arithmetic mean answers the question of what 11 growth rate is the best estimate of the future amount of money 12 that will be produced by continually reinvesting in the stock 13 market. It is the rate of return which, compounded over multiple periods, gives the mean of the probability distribution of ending 14 15 wealth. (emphasis added) 16 In addition, Brealey and Myers¹⁵ note: 17 18 The proper uses of arithmetic and compound rates of return from 19 past investments are often misunderstood. . . Thus the 20 arithmetic average of the returns correctly measures the 21 opportunity cost of capital for investments. . . Moral: If the cost 22 of capital is estimated from historical returns or risk premiums, 23 use arithmetic averages, not compound annual rates of return. 24 (italics in original) 25 26 27 As previously discussed, investors gain insight into relative riskiness by analyzing expected future variability. This is accomplished by the use of the 28 arithmetic mean of a distribution of returns / premiums. Only the arithmetic 29 30 mean takes into account all of the returns / premiums, hence, providing 31 meaningful insight into the variance and standard deviation of those returns / 32 premiums.

¹³ J. Fred Weston and Eugene F. Brigham, <u>Essentials of Managerial Finance Third Edition</u> (The Dryden Press, 1974) 272.

¹⁴ Morin 133.

¹⁵ R. A. Brealey and S. C. Myers, <u>Principles of Corporate Finance Fifth Edition</u> (McGraw-Hill Publications, Inc., 1996) 146-147.

Q. Can it be demonstrated that the arithmetic mean takes into account all of
 the returns and therefore, that the arithmetic mean is appropriate to use
 when estimating the opportunity cost of capital in contrast to the
 geometric mean?

A. Yes. Pages 1 through 3 of Attachment PMA-6 graphically demonstrate this.
Page 1 charts the returns on large company stocks for each and every year,
1926 through 2011 from <u>SBBI 2012 Valuation</u>. It is clear from looking at the
year-to-year variation of these returns, that stock market returns, and hence,
equity risk premiums, vary.

10 The distribution of each and every one of those returns for the entire period 11 from 1926 through 2012 is shown on page 2. There is a clear bell-shaped pattern to the probability distribution of returns, an indication that they are 12 13 randomly generated and not serially correlated. The arithmetic mean of this 14 distribution of returns considers each and every return in the distribution. In doing so, the arithmetic mean takes into account the standard deviation or likely 15 16 variance which may be experienced in the future when estimating the rate of 17 return based upon such historical returns. In contrast, page 3 of Attachment 18 PMA-6 demonstrates that when the geometric mean is calculated, only two of 19 the returns are considered, namely the initial and terminal years, which, in this 20 case, are 1926 and 2011. Based upon only those two years, a constant rate of 21 return is calculated by the geometric average. That constant return, graphically, 22 is represented by a flat line, showing no year-to-year variation, over the entire 23 1926 to 2011 time period, which is obviously far different from reality, based 24 upon the probability distribution of returns shown on page 2 and demonstrated 25 on page 1.

1 Consequently, only the arithmetic mean takes the standard deviation of 2 returns which is critical to risk analysis into account. The geometric mean is 3 appropriate only when measuring historical performance and should not be 4 used to estimate the investors required rate of return.

Q. Please comment upon Mr. Parcell's use of the historical mean total return
 on U.S. Treasury securities.

- A. Although relying upon Morningstar's (i.e., Ibbotson & Associates) historical returns in his CAPM analysis, Mr. Parcell has ignored Ibbotson Associates'
 recommendations regarding the use of the <u>income</u> return and not the total return on U.S. Treasury securities in deriving an equity risk premium. As indicated on pages 55 and 56 of the <u>SBBI 2012 Valuation</u> (pages 8 and 9 of Attachment PMA-6):
- 13 Another point to keep in mind when calculating the equity risk 14 premium is that the income return on the appropriate-horizon 15 Treasury security, rather than the total return, is used in the 16 calculation. The total return is comprised of three return 17 components: the income return, the capital appreciation return, 18 and the reinvestment return. The income return is defined as 19 the portion of the total return that results from a periodic cash 20 flow or, in this case, the bond coupon payment. The capital 21 appreciation return results from the price change of a bond 22 over a specific period. Bond prices generally change in 23 reaction to unexpected fluctuations in yields. Reinvestment 24 return is the return on a given month's investment income when 25 reinvested into the same asset class in the subsequent months 26 of the year. The income return is thus used in the estimation of the equity risk premium because it represents the truly riskless portion of the return.^{2 (footnote omitted)} 27 28 29

* * * *

30 31 32

33

34

35

36

37

Anticipated changes in yields are assessed by the market and figured into the price of a bond. Future changes in yields that are not anticipated will cause the price of the bond to adjust accordingly. Price changes in bonds due to unanticipated changes in yields introduce price risk into the total return. Therefore, the total return on the bond series does not represent the riskless rate of return. The income return better represents the unbiased estimate of the purely riskless rate of return, since an investor can hold a bond to maturity and be entitled to the income return with no capital loss.

6 Hence, it is appropriate to use the <u>income</u> return and not the total return 7 on long-term U.S. government bonds when calculating a market equity risk 8 premium. Therefore, the correct derivation of the historical market equity risk 9 premium is the difference between the <u>arithmetic</u> mean total return on large 10 company common stocks of 11.8% and the arithmetic mean 1926-2011 <u>income</u> 11 return on long-term government bonds of 5.2% which results in a market equity 12 risk premium of 6.6% as derived in note 1 on page 4 of Attachment PMA-7.

Q. Please comment upon Mr. Parcell's failure to use a prospective, or forward-looking market equity risk premium?

No. As noted above, in addition to page 5, lines 30-31, Mr. Parcell clearly 15 Α. 16 states on page 22, lines 15-16 of his direct testimony that, "the cost of capital is 17 the prospective return available to investors from an opportunity cost: 18 alternative investments of similar risk." Therefore, it is appropriate to also give weight to an expected market return. One way to do so is to use the forecasted 19 20 market risk premium derived from Value Line's average median price 21 appreciation potential and average median expected dividend yield 3-5 years hence of 10.62% as derived in note 1 on page 4 of Attachment PMA-7 which, 22 23 when averaged with the 6.60%, properly calculated arithmetic mean historical 24 market equity risk premium results in a market equity risk premium of 8.61%.

25

26

1 2

3

4 5

Q. Please comment upon Mr. Parcell's failure to incorporate an empirical or ECAPM analysis?

27 A. No. Mr. Parcell failed to consider that, although numerous tests of the CAPM

have confirmed its validity, it has been determined that the empirical Security
 Market Line (SML) described by the traditional CAPM is not as steeply sloped
 as the predicted SML.

Numerous tests of the CAPM have measured the extent to which security returns and betas are related as predicted by the CAPM confirming its validity. However, Morin observes that while the results of these tests support the notion that beta is related to security returns, the empirical Security Market Line (SML) described by the CAPM formula is not as steeply sloped as the

9 predicted SML. Morin¹⁶ states:

10

11 12

13

14 15 16

17

18

19 20

21 22

23 24

25

26

27 28 With few exceptions, the empirical studies agree that ... low-beta securities earn returns somewhat higher than the CAPM would predict, and high-beta securities earn less than predicted.

Therefore, the empirical evidence suggests that the expected return on a security is related to its risk by the following approximation:

* *

 $K = R_{F} + x \beta(R_{M} - R_{F}) + (1-x) \beta(R_{M} - R_{F})$

where x is a fraction to be determined empirically. The value of x that best explains the observed relationship Return = $0.0829 + 0.0520 \beta$ is between 0.25 and 0.30. If x = 0.25, the equation becomes:

K = R_F + 0.25(R_M - R_F) + 0.75 β(R_M - R_F)¹⁷

29 In view of theory and practical research, both the traditional CAPM and the

30 ECAPM should be used.

31 Q. Some critics of the ECAPM model claim that using adjusted betas in a

32 traditional CAPM amounts to using an ECAPM. Is such a claim valid?

¹⁶ Morin 175.

¹⁷ Morin 190.

- A. Using adjusted betas in a CAPM analysis is not equivalent to the ECAPM.
 Betas are adjusted because of the general regression tendency of betas to
 converge toward 1.0 <u>over time</u>, i.e., over successive calculations of beta. As
 noted above, numerous studies have determined that the Security Market Line
 (SML) described by the CAPM formula at <u>any given moment</u> in time is not as
 steeply sloped as the predicted SML. Morin¹⁸ states:
- 7 Some have argued that the use of the ECAPM is inconsistent 8 with the use of adjusted betas, such as those supplied by Value 9 Line and Bloomberg. This is because the reason for using the 10 ECAPM is to allow for the tendency of betas to regress toward 11 the mean value of 1.00 over time, and, since Value Line betas 12 are already adjusted for such trend [sic], an ECAPM analysis 13 results in double-counting. This argument is erroneous. 14 Fundamentally, the ECAPM is not an adjustment, increase or 15 decrease, in beta. This is obvious from the fact that the 16 expected return on high beta securities is actually lower than that 17 produced by the CAPM estimate. The ECAPM is a formal 18 recognition that the observed risk-return tradeoff is flatter than predicted by the CAPM based on myriad empirical evidence. 19 The ECAPM and the use of adjusted betas comprised two 20 21 separate features of asset pricing. Even if a company's beta is 22 estimated accurately, the CAPM still understates the return for 23 low-beta stocks. Even if the ECAPM is used, the return for low-24 beta securities is understated if the betas are understated. 25 Referring back to Figure 6-1, the ECAPM is a return (vertical 26 axis) adjustment and not a beta (horizontal axis) adjustment. 27 Both adjustments are necessary. 28
- 29

Moreover, the slope of the Security Market Line (SML) should not be

- 30 confused with beta. As Eugene F. Brigham, finance professor emeritus and the
- 31 author of many financial textbooks states¹⁹:
- The slope of the SML reflects the degree of risk aversion in the economy – the greater the average investor's aversion to risk, then (1) the steeper is the slope of the line, (2) the greater is the risk premium for any risky asset, and (3) the higher is the required rate of return on risky assets.¹²

¹⁸ Morin 191.

¹⁹ Brigham and Gapenski 203.

¹²Students sometimes confuse beta with the slope of the SML. This is a mistake. As we saw earlier in connection with Figure 6-8, and as is developed further in Appendix 6A, beta does represent the slope of a line, but *not* the Security Market Line. This confusion arises partly because the SML equation is generally written, in this book and throughout the finance literature, as $k_i = R_F + b_i(k_M - R_F)$, and in this form b_i looks like the slope coefficient and $(k_M - R_F)$ the variable. It would perhaps be less confusing if the second term were written $(k_M - R_F)b_i$, but this is not generally done.

1

2 3

4

5

6 7

8 9 10

11

- Hence, the traditional CAPM understates the cost rate for common equity for
 companies with betas less than 1.0 and overstates the cost rate for companies
 with betas greater than 1.0. Consequently, Mr. Parcell erred by not employing
 the Empirical CAPM (ECAPM).
- Q. What would Mr. Parcell's CAPM results be had he utilized the prospective
 yield on long-term U.S. Treasury bonds, correctly estimated the market
 equity risk premium based upon arithmetic mean historical returns,
 including the correct income return on long-term government bonds, and
 a prospective market equity risk premium as well as the ECAPM?
- 22 Α. Attachment PMA-7 presents the results of the correct application of both the 23 traditional CAPM and the ECAPM for Mr. Parcell's water group. Page 1 shows the mean / median traditional CAPM results: 10.02% / 9.78%, while page 2 24 shows the mean / median ECAPM results: 10.71% / 10.53%. The mean / 25 26 median traditional CAPM and ECAPM results average: 10.37% / 10.16% for the water group. Focusing on the mean result as Mr. Parcell implicitly does on 27 page 22, lines 7-8 of his direct testimony, the CAPM-derived indicated result is 28 29 10.37% for the water group. This cost rate is still understated because it does 30 not reflect any additional risk of the Company due to its greater financial risk and small size as will be discussed below. 31

1 Clearly, then, Mr. Parcell's CAPM conclusion of 6.1% is grossly 2 understated.

3 Q. Do you have any final comments on Mr. Parcell's comments as to why his
4 CAPM results are so low, i.e., 6.0% - 6.1%?

A. Yes. Mr. Parcell provides two reasons for his "CAPM results" being lower than
his DCF and CE results on page 26, lines 9-25 of his direct testimony. First, he
states that "risk premiums are lower currently than was the case in prior years"
on lines 10-11. Second, he states on lines 13-14, that "the level of interest rates
on U.S. Treasury bonds (i.e., the risk free rate) has been lower in recent years."

Q. Do you agree with Mr. Parcell that risk premiums are lower currently than in prior years.

- 12 Α. No. Relative to Mr. Parcell's first points, that risk premiums are lower currently 13 than in prior years, Attachment PMA-8 demonstrates that the long-term market equity risk premium has actually risen since 2009²⁰. Using the Predictive Risk 14 Premium ModelTM (PRPMTM) to calculate market equity risk premiums based 15 16 upon the returns on large company common stocks from Ibbotson® SBBI® -2013 Valuation Yearbook – Market Results for Stocks, Bonds, Bills and Inflation 17 - 1926-2012 (SBBI - 2013 Valuation) from January 1926 through each of the 18 19 month-ends, September, 2009 – December, 2012, it is clear that the market equity risk premium has actually risen from 9.95% in September 2009 to 20 10.19% in December 2012 as shown on page 1 of Attachment PMA-8. 21
- 22

The PRPM™, which has been recently published in the *Journal of*

²⁰ September 2009 was the month in which the Company's was last authorized a return on common equity (9.75% in Docket No. 08-098).

Regulatory Economics (JRE)²¹ was developed from the work of Robert F. Engle 1 who shared the Nobel Prize in Economics in 2003 "for methods of analyzing 2 economic time series with time-varying volatility (ARCH)²²" with ARCH standing 3 4 for autoregressive conditional heteroskedasticity. In other words, volatility changes over time and is related from one period to the next, especially in 5 6 financial markets. Engle discovered that the volatility (usually measure by 7 variance) in prices and returns also clusters over time, is therefore highly 8 predictable and can be used to predict future levels of risk and risk premiums. In addition, the PRPMTM is not based upon an estimate of investor behavior, but 9 10 rather upon the evaluation of the results of that behavior, i.e., the variance of 11 historical equity risk premiums. Also, in the derivation of the premiums, greater weight is given to more recent time periods, in contrast to reliance upon the 12 13 geometric mean equity risk premium which gives equal weight to the first and 14 last premiums only and the arithmetic mean premium which gives equal weight 15 to each observed premium. Consequently, the market equity risk premiums derived using the PRPM[™], shown on page 1 of Attachment PMA-8 can provide 16 17 valuable and statistically robust insight into market equity risk premium levels at 18 any given point in time.

In addition, while market equity risk premiums may have been lower in
any given recent year, Mr. Parcell did not rely upon recent, short-term, market
equity risk premiums in his CAPM analysis. He relied upon the long-term (19262011) historical total returns on both large company common stocks and long-

²¹ "A New Approach for Estimating the Equity Risk Premium for Public Utilities", Pauline M. Ahern, Frank J. Hanley and Richard A. Michelfelder, Ph.D. <u>The Journal of Regulatory Economics</u> (December 2011), 40:261-278.

²² www.nobelprize.org

1 term government bonds from Morningstar consistent with the long-term nature 2 of the cost of common equity. Page 2 of Attachment PMA-8 derives the market 3 equity risk premiums based upon large company common stocks and long-term 4 government bonds from Ibbotson Associates (Morningstar) for 1926-2009, 1926-2010, 1926-2011 and 1926-2012. Although I have previously discussed 5 6 why the use of the total return on government bonds as well as geometric 7 means are both inappropriate for cost of capital purposes, page 2 of Attachment 8 PMA-8 presents these premiums for informational purposes. Page 2 also 9 presents the correctly derived equity risk premiums based upon the arithmetic 10 mean and the income return on long-term government bonds. It is clear that 11 based upon all of the equity risk premiums, correctly or incorrectly derived, on 12 page 2, that the long-term market equity risk premium is actually higher now 13 than when the Company was last authorized its current 9.75% return on 14 common equity in September 2009.

15 As to Mr. Parcell's second point that interest rate levels have been lower Again, the cost of common equity is a long-term and 16 in recent years. 17 prospective concept and looking at recent and expected interest rate levels over 18 short periods of time in the future, i.e., since September 2009 and through 2014, is inconsistent with the concept that rate of return analysts are seeking to 19 20 determine investors' expectations and requirements over the long term . Mr. 21 Parcell has no basis for stating that because the Federal Reserve System 22 (Federal Reserve) intends to maintain low interest rate levels through at least 2014, that these levels reflect investors' long term expectations. Moreover, on 23 24 page 26, line 15, Mr. Parcell has acknowledged that the level of interest rates is "partially the result of the actions of the Federal Reserve System to stimulate 25

1 the economy." Therefore, recent interest rate levels and those expected in the 2 near-term future, i.e., through 2014, are not representative of the long-term cost 3 of capital. Page 2 of Attachment PMA-8 corroborates this as it shows that, as 4 measured by the geometric mean, the average total return on long-term government bonds is the same for the years 1926-2012, 5.70%, as it was for 5 6 the years 1926-2009 with the correct income returns actually dropping from 7 5.20% for 1926-2009 to 5.10% for 1926-2012. On a correct arithmetic mean 8 basis, the average total return on long-term government bonds are the same 9 6.10% for 1926-2009 as it was for 1926-2012. Similarly, the correct arithmetic 10 mean income return on long-term government bonds is the same, 5.2% for 11 1926-2009 as it was for 1926-2012, as well as for the period in between.

12 Clearly, then, Mr. Parcell is wrong on both points. The long-term market 13 equity risk premium is not lower now than when the Company received its last 14 authorized return on common equity in 2009 and, while interest rate levels have 15 been and are expected to remain low in the short-term, long-term interest rate 16 levels have remained stable since 2009.

17 Comparable Earnings Analysis (CE)

Q. Do you have any comments regarding Mr. Parcell's comments on why his
 CE results are so low, i.e., 6.0% - 6.1%?

A. Yes. At page 25, lines 7-8 of his direct testimony, Mr. Parcell discusses his
CEM result of no more than 9.0% to 10.0% for his proxy utilities. As support for
his conclusion, he cites recent returns of 9.5% to 11.4% and market-to-book
ratios greater than 170% as well as prospective returns of 8.5% to 10.6%,
coupled with market-to-book ratios in excess of 150%. He concludes on lines
11-14 on page 25 that "[a]s a result, it is apparent that returns below this level

would continue to result in market-to-book ratios of well above 100 percent. An
earned return of 9.0% to 10.0% should thus result in a market-to-book ratio of
well above 100 percent." By these statements, it is clear that Mr. Parcell
believes that a direct relationship exists between market-to-book ratios and the
rate of earnings on book common equity. Such a relationship is not supported
by either the academic literature nor by an historical analysis of the experience
of unregulated companies.

8 Q. What does the academic literature say about the relationship between

9 allowed regulatory rates of return on common equity and utility market-to-

10 book ratios?

18

- 11 A. It is very clear from the academic literature that there is no such relationship.
- 12 Phillips²³ states the following:

13Many question the assumption that market price should equal14book value, believing that 'the earnings of utilities should be15sufficiently high to achieve market-to-book ratios which are16consistent with those prevailing for stocks of unregulated17companies.

- 19 Also, as I noted earlier on page 29, lines 4 6, while EPS is a significant
- 20 factor influencing market prices, it is by no means the only factor that affects
- 21 market prices. Bonbright²⁴ recognizes as much when he states:

In the first place, commissions cannot forecast, except within wide limits, the effect their rate Orders will have on the market prices of the stocks of the companies they regulate. In the second place, *whatever the initial market prices may be, they are sure to change not only with the changing prospects for earnings, but with the changing outlook of an inherently volatile stock market.* Moreover, even if a commission did possess the

²³ Charles F. Phillips, Jr., <u>The Regulation of Public Utilities – Theory and Practice</u>, 1993, Public Utilities Reports, Inc., Arlington, VA, p. 395.

²⁴ James C. Bonbright, Albert L. Danielsen, and David R. Kamerschen, <u>Principles of Public Utility</u> <u>Rates</u>, 1988, Public Utilities Reports, Inc., Arlington, VA, p. 334.

power of control, any attempt to exercise it . . . would result in harmful, uneconomic shifts in public utility rate levels. (italics added)

1

2

3

4

5 Q. Have you performed an analysis to determine the existence of a direct 6 relationship between the market-to-book ratios of unregulated companies 7 and their earned rates of return on book common equity?

8 Α. Yes. Since regulation acts as a surrogate for competition, it is reasonable to 9 look to the competitive environment for evidence of a direct relationship 10 between market-to-book ratios and earned returns on common equity (ROE). 11 To determine if Mr. Parcell's implicit assumption of such a direct relationship 12 has any merit, I observed the market-to-book ratios and the ROEs of the S&P 13 Industrial Index and the S&P 500 Composite Index over a long period of time. 14 On Attachment PMA-9, I have shown the market-to-book ratios, rates of return on book common equity (earnings/book ratios), annual inflation rates, and the 15 earnings/book ratios net of inflation (real rate of earnings) annually for the years 16 17 1947 through 2011. In each and every year, the market-to-book ratios of the S&P Industrial Index equaled or exceeded 1.00 times. In 1949, the only year in 18 19 which the market-to-book ratio was 1.00 (or 100%), the real rate of earnings on 20 book equity, adjusted for deflation, was 18.1% (16.3% + 1.8%). In contrast, in 21 1961, when the S&P Industrial Index experienced a market-to-book ratio of 2.01 22 times, the real rate of earnings on book equity for the Index was only 9.1% 23 (9.8% - 0.7%). In 1997, the market-to-book ratio for the Index was 5.88 times, 24 while the average real rate of earnings on book equity was 22.9% (24.6% -25 1.7%).

26 This analysis clearly demonstrates that competitive, unregulated 27 companies have never sold below book value, on average, and have sold at

book value in only one year since 1947. The data show that there is no
 relationship between earnings/book ratios and market-to-book ratios.

Because this lack of a relationship between earnings/book ratios and market-to-book ratios covers a 65-year period, 1947 through 2011, it cannot be validly argued that going forward a relationship would exist between earnings/book ratios and market-to-book ratios. The analysis shown on Attachment PMA-9, coupled with the supportive academic literature, demonstrate the following:

- 9 1. that while regulation is a substitute for marketplace competition, it
 10 can influence but not directly control market prices, and, hence,
 11 market-to-book ratios; and,
- 12 2. that the rates of return investors expect to achieve and which
 13 influence their willingness to pay market prices well in excess of
 14 book values have no meaningful, direct relationship to rates of
 15 earnings on book equity.

Q. Do you have any comment upon the proxy groups Mr. Parcell used in his
 comparable earnings (CE) analysis?

18 Α. Yes. Mr. Parcell used his water and gas company proxy groups as well as the 19 S&P 500 as discussed on pages 23 and 24 of his direct testimony. Any proxy 20 group selected for a CE analysis should be broad-based in order to obviate any 21 company-specific aberrations and should exclude utilities to avoid circularity 22 since the achieved returns on book common equity of utilities, being a function of the regulatory process, are substantially influenced by regulatory awards. 23 24 Therefore, the achieved ROEs of utilities are not representative of the returns 25 that could be earned in a truly competitive market. Hence, Mr. Parcell's use of

1

his water and gas proxy groups in his CE analysis should be rejected.

2 That leaves his use of the S&P 500 which, in my opinion, is too broad-3 based to be comparable in total risk to his proxy groups and, hence, the 4 Company. Also, the use of the S&P 500 does not meet the "corresponding risk' concept discussed in the Bluefield and Hope cases" (Mr. Parcell's direct 5 6 testimony, page 22, lines 13-14).

7

13

In view of the foregoing, Mr. Parcell's CE analysis should be rejected.

8 Corrected Conclusion of Mr. Parcell's Cost of Common Equity

9 Q. What would Mr. Parcell's conclusion of common equity cost rate be based

upon the corrections to his analyses discussed above? 10

11 Α. Based upon the corrections to Mr. Parcell's DCF and CAPM results discussed 12 above, his three analyses produce the following:

Value Line

14			Water Group	
15				
16		DCF	9.59% - 9.78%	
17			(midpoint: 9.69%)	
18				
19		CAPM	10.37%	
20		.		
21		CE	NA	
22				
23		NA = NOT Applicable		
24 25	Focusing or	n the midpoint of the	DCF range, a range of o	common equity
26	cost rate of 9.69%	6 - 10.37% with a m	idpoint of 10.03% is inc	dicated, as Mr.
27	Parcell did on pa	ge 25 of his direct t	testimony. However, th	is 10.03% still

28 understates the Company's common equity cost rate because it does not reflect 29 any adjustment for the Company's greater financial risk and business risk due to its smaller size relative to the water proxy group as will be discussed below. 30

1 Adjustment to Reflect Company-Specific Risk

2 Financial Risk

3

Q. Does your correction to Mr. Parcell's common equity cost rate analysis
 adequately reflect the greater financial risk of the Company relative to the
 water group?

A. No. Financial risk is the additional risk created by the introduction of senior
capital, i.e., debt and preferred stock, into the capital structure. The higher the
proportion of senior capital in the capital structure, the higher the financial risk
which must be factored into the common equity cost rate, consistent with the
previously mentioned basic financial principle of risk and return, i.e., investors
demand a higher common equity return as compensation for bearing higher
investment risk.

Q. Please describe the financial risk inherent in the Company's requested capital structure relative to the financial risk of the water group.

A. The Company experiences greater financial risk than the water group because
its requested capital structure contains a greater proportion of long-term debt
than does the water group. The Company's requested long-term debt ratio is
58.73% as shown on page 1 of Schedule 4 of the Company's permanent rate
filing. In contrast, as shown on Attachment PMA-10, the water group
experiences a long-term debt ratio of 50.69% on average at December 31,
2011.

Thus, the Company has greater financial risk than the companies in the water group. The market data of the water group reflects investors' perception of the financial and business risks of the companies in the group and not those

1 of the Company. Rate of return analysts such as Mr. Parcell rely upon the 2 market data of group(s) of companies as similar in risk as possible to the utility 3 for whom rates are being set. In this instance, Mr. Parcell relied upon a group 4 of publicly-traded water companies for whom the market data necessary for a cost of common equity analysis could be undertaken was available. However, 5 6 any group of comparable companies may be relatively similar to, but not 7 identical in risk, to the Company for whom rates are being set. Since the market 8 data of the water group reflects the risks of the water group and not the 9 Company, the financial and business risks of the Company must be compared with those of the average company in the water group and adjusted, if 10 necessary, to reflect the unique relative financial (credit) and/or business risk of 11 12 Because investors require a higher return in exchange for the Company. 13 bearing higher risk, an upward adjustment to the common equity cost rate 14 derived from the market data of the water group companies which have a lower 15 degree of financial and business risk than the Company is necessary.

16Q.Do you agree with Mr. Parcell when he states on lines 5 – 8 on page 14 of17his direct testimony that: "Without a comparison of the Company's18capital structures with its affiliated companies, which are frequently inter-19twined for financing, it is not feasible to conclude that AWC-NH's capital20structure has less equity, and thus more financial risk, than other water21utilities?"

A. No. The Company informs me that its long-term debt currently consists of three
issues, all of which are privately placed with external debt-holders. Therefore,
no "inter-twining" exists. Moreover, as will be discussed relative to business
risk, it is not the source of funds which gives rise to the risk of an investment,

but rather the use of the funds. Therefore, it is irrelevant whether the "intertwining" tacitly alleged by Mr. Parcell exists. Consequently, a comparison of the
Company's financial risk, as measured by the level of debt in its capital
structure, with that of the water group is both feasible and necessary since it is
the group's market data upon which Mr. Parcell relied in arriving at a
recommended range of common equity cost rate.

Q. Is there a way to quantify a financial risk adjustment due to the Company's
greater financial risk relative to the water group?

9 A. Yes. An indication of the magnitude of the necessary financial risk adjustment
10 is given by the Hamada equation²⁵, which un-levers and then re-levers betas
11 based upon changes in capital structure.

The Hamada equation un-levers the median beta of the water group of 12 13 0.65 with an average December 31, 2011 total equity ratio of 49.31% to 0.39 when applied to a 100% common equity ratio and then levers the beta to 0.75 14 15 using the Company's total (including preferred stock) requested equity ratio of 41.27% at December 31, 2011. The re-levered beta, applied to a 8.61% 16 17 corrected market risk premium and a 4.18% corrected risk-free rate translates to a 10.86%²⁶ common equity cost rate. The difference between the 10.64% 18 relevered beta common equity cost rate and the result of my application of the 19 traditional CAPM for the water group with a median beta of 0.65, 9.78%²⁷ is 86 20 21 basis points. Thus, a financial adjustment of 88 basis points reflects the greater 22 financial risk of the Company attributable to its lower requested total equity ratio

²⁵ Brigham and Daves 533.

²⁶ $10.64\% = (0.75 \times 8.61\%) + 4.18\%.$

 $^{9.78\% = (0.65 \}times 8.61\%) + 4.18\%.$

1		of 41.27% at December 13, 2011 compared with the water group's average
2		total equity ratio of 49.31% at December 31, 2011. The Hamada Equation and
3		calculations are as follows:
4 5		$b_{1} = b [1 + (1 - T)(D/S)]$
6		Where b_i = Levered beta
7		b = Un-levered beta
8		T = Tax Rate
9		(D/S) = Debt to Common Equity Ratio
10 11		To un-lever the beta from a 49.03% average water group total equity ratio, the
12		following equation is used:
13		$0.65 = b_{\mu}[1 + (1 - 0.35) (50.69\%/49.31\%)]$
14 15		When solved for $b = 0.30$ indicating that the beta for the water group of
15		when solved for b_u , $b_u = 0.39$, indicating that the beta for the water group of
16		water group would be 0.39 if their average capital structure contained 100%
17		total equity.
18		To re-lever the beta relative to the Company's 41.27% at December 31,
19		2011 ratemaking total equity ratio, the following equation is used:
20		$b_i = 0.39 [1 + (1 - 0.35) (58.73\%/41.27\%)]$
21 22		When solved for b_i , $b_i = 0.75$, indicating that the beta for the water group would
23		be 0.75, if their average capital structure contained 41.27% total equity.
24	<u>Busi</u>	ness Risk Adjustment
25	Q.	Does your correction to Mr. Parcell's common equity cost rate analysis
26		adequately reflect the risk implications of the Company's small size
27		relative to the water group?
28	A.	No. Company size is a significant element of business risk for which investors
29		expect to be compensated through greater returns. Smaller companies are

1 simply less able to cope with significant events which affect sales, revenues and 2 earnings. For example, smaller companies face more risk exposure to business 3 cycles and economic conditions, both nationally and locally. Additionally, the 4 loss of revenues from a few larger customers would have a greater effect on a small company than on a much larger company with a larger, more diverse, 5 6 customer base. Moreover, smaller companies are generally less diverse in their 7 operations and have less financial flexibility. In addition, extreme weather 8 conditions, i.e., prolonged droughts or extremely wet weather, will have a 9 greater affect upon a small operating water utility than upon the much larger, 10 more geographically diverse holding companies.

11 A specific example of the very real impact of how Company size affects 12 business risk is the significant impact on the Company of the increase in 13 property-related taxes of \$107,540 assessed by the Town of Hampton since the 14 Company's last rate case, which includes a substantial new "right of way tax". 15 This represents an exceptionally high percentage, 28%, of the Company's test year net income. Such a large reduction in net income will negatively affect the 16 17 Company's cashflows, reducing the funds available to be retained to meet the 18 Company's ongoing capital requirements as well as the cash available to pay a return to investors in the form of a dividend. The fact that a single expense 19 20 imposed by a single town can have an impact of this magnitude provides a vivid 21 demonstration of the heightened risk faced by investors in this small Company 22 versus a utility that serves a broad area of the state.

Eurther evidence of the risk effects of size include the fact that investors demand greater returns to compensate for the lack of marketability and liquidity of the securities of smaller firms. It is a generally-accepted financial principle

1 that the risk of any investment is directly related to the assets in which the 2 capital is invested. The Commission should focus on the risk and return on the 3 common equity investment in the Company's jurisdictional rate base because it 4 is the Company's rates which will be set in this proceeding. The fair rate of 5 return must relate to where capital is invested. In other words, that it is the use 6 of funds invested and not the source of those funds which gives rise to the risk 7 of any investment. Therefore, the relevant risk reflected in the cost of capital 8 must be that of the Company, including the impact of its small size on common 9 equity cost rate. As noted above, the Company is significantly smaller than the 10 average water group company based upon total capitalization.

11 Consistent with the financial principle of risk and return discussed above, 12 such increased risk due to small size must be taken into account in the allowed 13 rate of return on common equity.

Q. Does the financial literature support the basic financial principle that it is
 the use of the funds invested which gives rise to the risk of the
 investment, not the source of the funds?

- 17 A. Yes. As Richard A. Brealey and Stewart C. Myers state in Principles of
- 18 <u>Corporate Finance²⁸</u>:

19But the company cost of capital rule can also get a firm into trouble20if the new projects are more or less risky than its existing21business. Each project should be evaluated at its own opportunity22cost of capital. This is a clear implication of the value-additivity23principle introduced in Chapter 7. For a firm composed of assets24A and B, the firm value is

- 25 Firm Value = PV(AB) = PV(A) + PV(B) = sum of separate asset
- 26 values

²⁸ Richard A. Brealey and Stewart C. Myers, <u>Principles of Corporate Finance</u> (McGraw-Hill Book Company, 1996) 204-205.

33	Q.	Please compare the size of the Company with that of the companies in the
32		of the Company and its rate base alone that is relevant.
31		public" is the rate base of the Company. Therefore, it is the total investment risk
30		property. In this proceeding, the property employed "for the convenience of the
29		appropriate level of rates and not the source of the capital financing that
20		and property employed for the convenience of the constal financing that
28		the property employed for the "convenience of the public" which determines the
26 27		Bluefield is clear, then, that it is the "risks and uncertainties" surrounding
24 25		investments in other business undertakings which are attended by corresponding risks and uncertainties;
23		the same time and in the same general part of the country on
20 21 22		return on the value of the property which it employs for the
20		A public utility is entitled to such rates as will permit it to earn a
19		Company must be viewed on its own merits. As <i>Bluefield</i> ³⁰ so clearly states:
18		with the risk associated with where their capital is invested. Hence, the
17		It is fundamental that individual investors expect a return commensurate
16 16		required discount rate, to reflect this deviation in the risk profile.
14		In any case where the risk profile of the individual projects differ
13		project's cost of capital. (Italics contained in original text.)
11 12		a distinction between the <i>firm</i> 's cost of capital and specific
10		The cost of capital and the discount rate are two concepts which
9		In addition, Haim Levy and Marshall Sarnat ²⁹ state:
7 8		use to which the capital is put. (italics added to first paragraph, italics in original text in last paragraph)
5		the expected rate of return that investors would demand to make a
3 4		investing in a third project C, it should also value C as if C were a mini-firm That is the firm should discount the cash flows of C at
2		which stockholders could invest directly If the firm considers
1		Here PV(A) and PV(B) are valued just as if they were mini-firms in

Haim Levy and Marshall Sarnat, <u>Capital Investments and Decisions</u>, 5th Ed. (Prentice/Hall International, 1986) 464-465. <u>Bluefield Water Works Improvement Co. v. Public Serv. Comm'n</u>, 252 U.S. 679 (1922). 47

1

25

26

27

28

water group.

2 Α. I have made a study of the market capitalization of the Company relative to the 3 water group. The results are shown on Attachment PMA-12. Page 1 contains a 4 summary of an indicated small size risk adjustment based upon the SBBI-2012 size premium study, while page 2 contains a summary of the market 5 6 capitalizations based upon each water company's average market prices for the three months ended December 2012 from Exhibit (DHC-1), Schedule 6, page 7 8 1. As shown, the Company is significantly smaller than the average company in 9 the water group based upon market capitalization as shown below:

10 Table 3 11 12 Times Market Greater than 13 14 Capitalization (1) Town of Hampton 15 (\$ millions) (\$ Millions) 16 17 Value Line Water Group \$1,438.822 82.4x 18 Town of Hampton 17.455 19 (1) From page 1 of Attachment PMA-12. 20 21 22 The Company has no common stock which is publicly traded. 23 Consequently, I have assumed that if it did and it were publicly traded, its common shares would be selling at the same market-to-book value as the 24

29 larger than the Company's estimated market capitalization.
 30 Because of the Company's extremely small estimated market
 31 capitalization, relative to the estimated average market capitalization of the

average water company in the water group. Hence, the Company's market

capitalization is estimated to be \$17.455 million, based upon the water group

as shown in Table 3 above. In contrast, the market capitalization of the

average water company in the water group was \$1.439 billion, or 82.4 times

1 water group, a 4.35% small size risk premium, or the difference between the size premium applicable to the 10th decile in which the Company falls and the 2 6th decile in which the average company in the water group falls, is justified. 3 4 In my opinion, although an adjustment of 4.35% is indicated by the SBBI -2012 Valuation size premium study, an adjustment to common equity cost 5 6 rate of 40 basis points, represents an extremely conservative and reasonable 7 size premium which would be applicable to the Company based upon its 8 smaller relative size.

9 In view of the foregoing, an upward adjustment of 0.86 basis points to 10 reflect the Company's greater relative financial risk and a business risk 11 adjustment of 40 basis points, due to its smaller size are necessary. When 12 added to the corrected range of DCF cost rate and CAPM cost rate, a risk-13 adjusted range of DCF cost rate of 10.85% - 11.04% and of CAPM cost rate of 14 11.63% are indicated as summarized below:

15 16		Corrected Range DCF Cost Rate	Corrected CAPM
17		9.59%-9.78%	Cost Rate
18		<u>(midpoint: 9.69%)</u>	<u>10.37%</u>
19			
20	Financial Risk Adjustment	0.86	0.86
21			
22	Business Risk Adjustment	<u>0.40</u>	<u>0.40</u>
23			
24	Financial- and Business-Ris	ik	
25	Adjusted Cost Rate	10.85%-11.04%	11.63%
26	-	(midpoint: 10.95%)	
27			

Focusing on the midpoint of the risk-adjusted DCF cost rate, a range of corrected, risk-adjusted common equity cost rate of 10.95%-11.63% with a midpoint of 11.29% is indicated, which confirms the reasonable and conservative nature of the Company's requested 10.25% common equity cost

1 rate.

2 Q. Does that conclude your rebuttal testimony?

3 A. Yes.

APPENDIX A

PROFESSIONAL QUALIFICATIONS

OF

PAULINE M. AHERN, CRRA PRINCIPAL

AUS CONSULTANTS

PROFESSIONAL QUALIFICATIONS OF PAULINE M. AHERN, CRRA PRINCIPAL AUS CONSULTANTS

PROFESSIONAL EXPERIENCE

1994-Present

In 1996, I became a Principal of AUS Consultants, continuing to offer testimony as an expert witness on the subjects of fair rate of return, cost of capital and related issues before state public utility commissions. I provide assistance and support to clients throughout the entire ratemaking litigation process. In addition, I supervise the financial analyst and administrative staff in the preparation of fair rate of return and cost of capital exhibits which are filed along with expert testimony before various state and federal public utility regulatory bodies. The team also assists in the preparation of interrogatory responses, as well as rebuttal exhibits.

As the Publisher of AUS Utility Reports (formerly C. A. Turner Utility Reports), I am responsible for the production, publishing, and distribution of the reports. AUS Utility Reports provides financial data and related ratios for about 120 public utilities, i.e., electric, combination gas and electric, natural gas distribution, natural gas transmission, telephone, and water utilities, on a monthly, quarterly and annual basis. Among the subscribers of AUS Utility Reports are utilities, many state regulatory commissions, federal agencies, individuals, brokerage firms, attorneys, as well as public and academic libraries. The publication has continuously provided financial statistics on the utility industry since 1930.

As the Publisher of AUS Utility Reports, I also supervise the production, publishing, and distribution of the AGA Rate Service publications under license from the American Gas Association. I am also responsible for maintaining and calculating the performance of the AGA Index, a market capitalization weighted index of the common stocks of the approximately 70 corporate members of the AGA, which serves as the benchmark for the AGA Gas Utility Index Fund.

As an Assistant Vice President from 1994 - 1996, I prepared fair rate of return and cost of capital exhibits which were filed along with expert testimony before various state and federal public utility regulatory bodies. These supporting exhibits include the determination of an appropriate ratemaking capital structure and the development of embedded cost rates of senior capital. The exhibits also support the determination of a recommended return on common equity through the use of various market models, such as, but not limited to, Discounted Cash Flow analysis, Capital Asset Pricing Model and Risk Premium Methodology, as well as an assessment of the risk characteristics of the client utility. I also assisted in the preparation of responses to any interrogatories received regarding such testimonies filed on behalf of client utilities. Following the filing of fair rate of return testimonies, I assisted in the evaluation of opposition testimony in order to prepare interrogatory questions, areas of cross-examination, and rebuttal testimony. I also evaluated and assisted in the preparation of briefs and exceptions following the hearing process. I also submitted testimony before state public utility commissions regarding appropriate capital structure ratios and fixed capital cost rates.

<u>1990-1994</u>

As a Senior Financial Analyst, I supervised two analysts and assisted in the preparation of fair rate of return and cost of capital exhibits which are filed along with expert testimony before various state and federal public utility regulatory bodies. The team also assisted in the preparation of interrogatory responses.

I evaluated the final orders and decisions of various commissions to determine whether further actions were warranted and to gain insight which assisted in the preparation of future rate of return studies.

I assisted in the preparation of an article authored by Frank J. Hanley and A. Gerald Harris entitled "Does Diversification Increase the Cost of Equity Capital?" published in the July 15, 1991 issue of <u>Public</u> <u>Utilities Fortnightly</u>.

In 1992, I was awarded the professional designation "Certified Rate of Return Analyst" (CRRA) by the National Society of Rate of Return Analysts (now the Society of Utility and Regulatory Financial Analysts (SURFA)). This designation is based upon education, experience and the successful completion of a comprehensive examination.

As Administrator of Financial Analysis for AUS Utility Reports, which then reported financial data for over 200 utility companies with approximately 1,000 subscribers, I oversaw the preparation of this monthly publication, as well as the accompanying annual publication, <u>Financial Statistics - Public Utilities</u>.

<u>1988-1990</u>

As a Financial Analyst, I assisted in the preparation of fair rate of return studies including capital structure determination, development of senior capital cost rates, as well as the determination of an appropriate rate of return on equity. I also assisted in the preparation of interrogatory responses, interrogatory questions of the opposition, areas of cross-examination and rebuttal testimony. I also assisted in the preparation of the annual publication <u>C. A. Turner Utility Reports - Financial Statistics - Public Utilities</u>.

<u>1973-1975</u>

As a Research Assistant in the Research Department of the Regional Economics Division of the Federal Reserve Bank of Boston, I was involved in the development and maintenance of econometric models to simulate regional economic conditions in New England in order to study the effects of, among other things, the energy crisis of the early 1970's and property tax revaluations on the economy of New England. I was also involved in the statistical analysis and preparation of articles for the <u>New England</u> <u>Economic Review</u>. Also, I was Assistant Editor of <u>New England Business Indicators</u>.

<u>1972</u>

As a Research Assistant in the Office of the Assistant Secretary for International Affairs, U.S. Treasury Department, Washington, D.C., I developed and maintained econometric models which simulated the economy of the United States in order to study the results of various alternate foreign trade policies so that national trade policy could be formulated and recommended.

Clients Served

I have offered expert testimony before the following commissions:

Arkansas	Maine
Arizona	Maryland
British Columbia	Michigan
California	Missouri
Canada	Nevada
Connecticut	New Jersey
Delaware	New York
Florida	North Carolina
Hawaii	Ohio
Idaho	Pennsylvania
Illinois	Rhode Island
Indiana	South Carolina
lowa	Virginia
Kentucky	Washington
Louisiana	-

I have sponsored testimony on fair rate of return and related issues for:

Alpena Power Company Apple Canyon Utility Company Applied Wastewater Management, Inc. Aqua Illinois, Inc. Aqua New Jersey, Inc. Agua North Carolina, Inc. Aqua Ohio, Inc. Aqua Virginia, Inc. Aquarion Water Company Arizona Water Company Artesian Water Company Bermuda Water Company The Atlantic City Sewerage Company Audubon Water Company The Borough of Hanover, PA Carolina Pines Utilities, Inc. Carolina Water Service, Inc. of NC Carolina Water Service, Inc. of SC The Columbia Water Company The Connecticut Water Company **Consumers Illinois Water Company Consumers Maine Water Company** Consumers New Jersey Water Company City of DuBois, Pennsylvania Elizabethtown Water Company **Emporium Water Company** GTE Hawaiian Telephone Inc. Greenridge Utilities, Inc. Illinois American Water Company Iowa American Water Company Jersey Central Power & Light Co. Water Services Corp. of Kentucky Lake Wildwood Utilities Corp. Land'Or Utility Company Long Island American Water Company Long Neck Water Company Louisiana Water Service, Inc. Massanutten Public Service Company Middlesex Water Company Missouri-American Water Company Mt. Holly Water Company Nero Utility Services, Inc. New Jersey Utilities Association The Newtown Artesian Water Company NRG Energy Center Pittsburgh LLC NRG Energy Center Harrisburg LLC **Ohio-American Water Company** Penn Estates Utilities **Pinelands Water Company**

Pinelands Waste Water Company Pittsburgh Thermal San Gabriel Valley Water Company San Jose Water Company Southland Utilities, Inc. Spring Creek Utilities, Inc. Sussex Shores Water Company Tega Cay Water Services, Inc. Total Environmental Services, Inc. -**Treasure Lake Water & Sewer Divisions** Thames Water Americas Tidewater Utilities, Inc. Transylvania Utilities, Inc. Trigen – Philadelphia Energy Corporation Twin Lakes Utilities, Inc. United Utility Companies United Water Arkansas, Inc. United Water Arlington Hills Sewerage, Inc. United Water Connecticut, Inc. United Water Delaware, Inc. United Water Great Gorge Inc. / United Water Vernon Transmission, Inc. United Water Idaho. Inc. United Water Indiana, Inc. United Water New Jersey, Inc. United Water New Rochelle, Inc. United Water New York, Inc. United Water Owego / Nichols, Inc. United Water Pennsylvania, Inc. United Water Rhode Island, Inc. United Water South County, Inc. United Water Toms River, Inc. United Water Vernon Sewage Inc. United Water Virginia, Inc. United Water Westchester, Inc. United Water West Lafayette, Inc. United Water West Milford, Inc. Utilities. Inc. Utilities Inc. of Central Nevada Utilities, Inc. of Florida Utilities. Inc. of Louisiana Utilities. Inc. of Nevada Utilities, Inc. of Pennsylvania Utilities, Inc. - Westgate Utilities Services of South Carolina Utility Center, Inc. Vallev Energy, Inc. Wellsboro Electric Company Western Utilities, Inc.

I have sponsored testimony on generic/uniform methodologies for determining the return on common equity for:

Aquarion Water Company The Connecticut Water Company Corix Multi-Utility Services, Inc. United Water Connecticut, Inc. Utilities, Inc.

I have sponsored testimony on the rate of return and capital structure effects of merger and acquisition issues for:

California-American Water Company

New Jersey-American Water Company

I have sponsored testimony on capital structure and senior capital cost rates for the following clients:

Alpena Power Company Arkansas-Western Gas Company Associated Natural Gas Company PG Energy Inc. United Water Delaware, Inc. Washington Natural Gas Company

I have sponsored testimony on Distribution System Improvement Charges (DSIC):

Arizona Water Company

I have assisted in the preparation of rate of return studies on behalf of the following clients:

Algonquin Gas Transmission Company Anadarko Petroleum Corporation Arizona Water Company Arkansas-Louisiana Gas Company Arkansas Western Gas Company Artesian Water Company Associated Natural Gas Company Atlantic City Electric Company Bridgeport-Hydraulic Company Cambridge Electric Light Company Carolina Power & Light Company Citizens Gas and Coke Utility City of Vernon, CA Columbia Gas/Gulf Transmission Cos. Commonwealth Electric Company Commonwealth Telephone Company Conestoga Telephone & Telegraph Co. Connecticut Natural Gas Corporation Consolidated Gas Transmission Company **Consumers Power Company** CWS Systems, Inc. Delmarva Power & Light Company East Honolulu Community Services, Inc. Equitable Gas Company Equitrans, Inc. Florida Power & Light Company Gary Hobart Water Company Gasco. Inc. GTE Arkansas. Inc. GTE California. Inc. GTE Florida. Inc. GTE Hawaiian Telephone GTE North, Inc. GTE Northwest, Inc. GTE Southwest, Inc. Great Lakes Gas Transmission L.P. Hawaiian Electric Company Hawaiian Electric Light Company **IES** Utilities Inc. Illinois Power Company Interstate Power Company Interstate Power & Light Co.

Iowa Electric Light and Power Company Iowa Southern Utilities Company Kentucky-West Virginia Gas Company Lockhart Power Company Middlesex Water Company Milwaukee Metropolitan Sewer District Mountaineer Gas Company National Fuel Gas Distribution Corp. National Fuel Gas Supply Corp. Newco Waste Systems of NJ, Inc. New Jersey Natural Gas Company New Jersey-American Water Company New York-American Water Company North Carolina Natural Gas Corp. Northumbrian Water Company Ohio-American Water Company Oklahoma Natural Gas Company Orange and Rockland Utilities Paiute Pipeline Company PECO Energy Company Penn Estates Utilities, Inc. Penn-York Energy Corporation Pennsylvania-American Water Co. PG Energy Inc. Philadelphia Electric Company Providence Gas Company South Carolina Pipeline Company Southwest Gas Corporation Stamford Water Company Tesoro Alaska Petroleum Company Tesoro Refining & Marketing Co. United Telephone of New Jersev United Utility Companies United Water Arkansas, Inc. United Water Delaware, Inc. United Water Idaho, Inc. United Water Indiana, Inc. United Water New Jersey, Inc.

Rate of Return Clients Continued

United Water New York, Inc. United Water Pennsylvania, Inc. United Water Virginia, Inc. United Water West Lafayette, Inc. Utilities, Inc. of Pennsylvania Utilities, Inc. - Westgate Vista-United Telecommunications Corp. Washington Gas Light Company Washington Natural Gas Company Washington Water Power Corporation Waste Management of New Jersey – Transfer Station A Wellsboro Electric Company Western Reserve Telephone Company Western Utilities, Inc. Wisconsin Power and Light Company

EDUCATION:

1973 – Clark University – B.A. – Honors in Economics (Concentration: Econometrics and Regional/International Economics)

1991 – Rutgers University – M.B.A. – High Honors (Concentration: Corporate Finance)

PROFESSIONAL AFFILIATIONS:

Advisory Board – Financial Research Institute – University of Missouri Edison Electric Institute – Cost of Capital Working Group National Association of Water Companies – Member of the Finance/Accounting/Taxation and Rates and Regulation Committees Society of Utility and Regulatory Financial Analysts Member, Board of Directors – 2010-2014 President – 2006-2008 and 2008-2010 Secretary/Treasurer – 2004-2006 American Finance Association Financial Management Association Energy Bar Association Energy Association of Pennsylvania

SPEAKING ENGAGEMENTS:

"Issues Surrounding the Determination of the Allowed Rate of Return", before the Staff Subcommittee on Electricity of the National Association of Regulatory Utility Commissioners, Winter 2013 Committee Meetings, February 3, 2013, Washington, DC.

"Leadership in the Financial Services Sector", Guest Professor – Cost of Capital, Business Leader Development Program, Rutgers University School of Business, February 1, 2013, Camden, NJ.

"Analyst Training in the Power and Gas Sectors", SNL Center for Financial Education, Downtown Conference Center at Pace University, New York City, December 12, 2012, Instructor (Financial Statement Analysis).

"Regulatory Training in Financing Planning, Strategies and Accounting Issues for Publicly and Privately Owned Water and Wastewater Utilities", New Mexico State University Center for Public Utilities, October 14-19, 2012, Instructor (Cost of Financial Capital).

"Application of a New Risk Premium Model for Estimating the Cost of Common Equity", Co-Presenter with Dylan W. D'Ascendis, CRRA, AUS Consultants, Edison Electric Institute Cost of Capital Working Group, October 3, 2012, Webinar.

"Application of a New Risk Premium Model for Estimating the Cost of Common Equity", Co-Presenter with Dylan W. D'Ascendis, CRRA, AUS Consultants, Staff Subcommittee on Accounting and Finance of the National Association of Regulatory Commissioners, September 10, 2012, St. Paul, MN.

"Analyst Training in the Power and Gas Sectors", SNL Center for Financial Education, Downtown

Conference Center at Pace University, New York City, August 7, 2012, Instructor (Financial Statement Analysis).

"Advanced Regulatory Training in Financing Planning, Strategies and Accounting Issues for Publicly and Privately Owned Water and Wastewater Utilities", New Mexico State University Center for Public Utilities, May 13-17, 2012, Instructor (Cost of Financial Capital).

"A New Approach for Estimating the Equity Risk Premium Applied to Public Utilities", before the Finance and Regulatory Committees of the National Association of Water Companies, March 29, 2012, Telephonic Conference.

"A New Approach for Estimating the Equity Risk Premium Applied to Public Utilities", (co-presenter with Frank J. Hanley, Principal and Director, AUS Consultants) before the Water Committee of the National Association of Regulatory Utility Commissioners' Winter Committee Meetings, February 7, 2012, Washington, DC.

"A New Approach for Estimating the Equity Risk Premium Applied to Public Utilities", (co-presenter with Richard A. Michelfelder, Ph.D., Rutgers University and Frank J. Hanley, Principal and Director, AUS Consultants) before the Wall Street Utility Group, December 19, 2011, New York City, NY.

"Advanced Cost and Finance Issues for Water", (co-presenter with Gary D. Shambaugh, Principal & Director, AUS Consultants), 2011 Advanced Regulatory Studies Program – Ratemaking, Accounting and Economics, September 29, 2011, Kellogg Center at Michigan State University – Institute for Public Utilities, East Lansing, MI.

"Public Utility Betas and the Cost of Capital", (co-presenter with Richard A. Michelfelder, Ph.D., Rutgers University) – Advanced Workshop in Regulation and Competition, 30th Annual Eastern Conference of the Center for Research in Regulated Industries (CRRI), May 20, 2011, Rutgers University, Skytop, PA.

Moderator: Society of Utility and Regulatory Financial Analysts: 43rd Financial Forum – "Impact of Cost Recovery Mechanisms on the Perception of Public Utility Risk", April 14-15, 2011, Washington, DC.

"A New Approach for Estimating the Equity Risk Premium for Public Utilities", (co-presenter with Richard A. Michelfelder, Ph.D., Rutgers University) – Hot Topic Hotline Webinar, December 3, 2010, Financial Research Institute of the University of Missouri.

"A New Approach for Estimating the Equity Risk Premium for Public Utilities", (co-presenter with Richard A. Michelfelder, Ph.D., Rutgers University) before the Indiana Utility Regulatory Commission Cost of Capital Task Force, September 28, 2010, Indianapolis, IN

Tomorrow's Cost of Capital: Cost of Capital Issues 2010, Deloitte Center for Energy Solutions, 2010 Deloitte Energy Conference, "Changing the Great Game: Climate, Customers and Capital", June 7-8, 2010, Washington, DC.

"A New Approach for Estimating the Equity Risk Premium for Public Utilities", (co-presenter with Richard A. Michelfelder, Ph.D., Rutgers University) – Advanced Workshop in Regulation and Competition, 29th Annual Eastern Conference of the Center for Research in Regulated Industries (CRRI), May 20, 2010, Rutgers University, Skytop, PA

Moderator: Society of Utility and Regulatory Financial Analysts: 42nd Financial Forum – "The Changing Economic and Capital Market Environment and the Utility Industry", April 29-30, 2010, Washington, DC

"A New Model for Estimating the Equity Risk Premium for Public Utilities" (co-presenter with Richard A. Michelfelder, Ph.D., Rutgers University) – Spring 2010 Meeting of the Staff Subcommittee on Accounting and Finance of the National Association of Regulatory Utility Commissioners, March 17, 2010, Charleston, SC

"New Approach to Estimating the Cost of Common Equity Capital for Public Utilities" (co-presenter with Richard A. Michelfelder, Ph.D., Rutgers University) - Advanced Workshop in Regulation and Competition,

28th Annual Eastern Conference of the Center for Research in Regulated Industries (CRRI), May 14, 2009, Rutgers University, Skytop, PA

Moderator: Society of Utility and Regulatory Financial Analysts: 41st Financial Forum – "Estimating the Cost of Capital in Today's Economic and Capital Market Environment", April 16-17, 2009, Washington, DC

"Water Utility Financing: Where Does All That Cash Come From?", AWWA Pre-Conference Workshop: Water Utility Ratemaking, March 25, 2008, Atlantic City, NJ

PAPERS:

"Comparative Evaluation of the Predictive Risk Premium[™], the Discounted Cash Flow Model and the Capital Asset Pricing Model", co-authored with Dylan W. D'Ascendis, Frank J. Hanley and Richard A. Michelfelder, Ph.D., Rutgers University, AUS Consultants Working Paper, January 2013.

"A New Approach for Estimating the Equity Risk Premium for Public Utilities", co-authored with Frank J. Hanley and Richard A. Michelfelder, Ph.D., Rutgers University, <u>The Journal of Regulatory Economics</u> (December 2011), 40:261-278.

"Comparable Earnings: New Life for an Old Precept" co-authored with Frank J. Hanley, <u>Financial</u> <u>Quarterly Review</u>, (American Gas Association), Summer 1994.